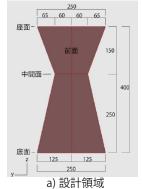
ロボットアームを用いたプロトタイピングにおける素材と加工法 に関する基礎的研究

白髪 誠一 赤井 愛 大阪工業大学ロボティクス&デザイン工学部空間デザイン学科 Seiichi Shiraga, Ai Akai, Shinji Miura Dept. of Design and Architecture, Osaka Institute of Tecnology

1. はじめに

本研究は、プロダクト創出において、ロボットアームを用い たプロトタイピングを対象に素材と加工法の組合せによって新 たな表現の可能性を調査することを目的とする。2021年度に おいて筆者1)は、ケミカルウッドを用いた曲面の切削実験を 行い、ロボットの姿勢による切削面の精度について調べた結果 から, 姿勢変化に伴う精度の低下が確認され, 高い精度が要求 されない状況での活用が有効であることを示している。

2022年度の研究では、プロトタイピングを対象に、ロボッ トアームを用いた切削加工と積層造形について調べている。


2. 切削加工

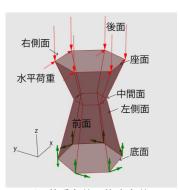

スツールを対象として構造最適化により得られた形態を積層 型3Dプリンタによる造形とロボットアームに装着した超音波 カッターによる切削加工によって造形する。

図1に示す解析モデルに対してBESO法により最適形状を求 めた。解析には応力解析プログラムである Karamba3D(ver2.2.0) を使用した。荷重条件は人が使用する際に想定される鉛直荷重 と水平荷重を座面の各頂点に作用させ、鉛直荷重は 2.0kN とし て水平荷重を 0.5kN, 0.85kN, 1.2kN の 3 種類とした。水平荷 重方向は設計領域前面から後面に向かう方向である。材料特性 は、ヤング係数 E=1950N/mm²、ポアソン比 $\nu = 0.3$ 、引張強さ fy=750N/mm²と設定した。シェル要素の初期厚は 5mm に設定 した。設計変数は、目標体積比=60%, 50%, 40%, 30%と影響 半径 Rmin=5mm, 10mm, 20mm そして水平荷重である。

図2に解析結果一覧をパラメータ空間に示す。パラメータ空 間は、横方向に目標体積比、奥行き方向に影響半径および高さ 方向に水平荷重と設定した空間である。水平荷重が大きくなる と、設計領域前面における引張力が大きくなるため、設計領域 前面のシェル厚が減少しない。影響半径が小さくなると、解形 態におけるシェル厚が減少する領域が細かくなり、より複雑な 形態が得られる。図3に採用した最適解を示す。目標体積比 =50%, 影響半径 =5mm および水平荷重 =1.2kN の最適解を造 形の対象とする。図4に示すように最適解におけるシェル厚が 2mm となる等厚線を抽出した後に平滑化した曲線を切削線とし た。

図5に示すように切削加工シミュレーションを行い、スツー ルの設置位置および超音波カッターの取付位置の検討を行った。 シミュレーションはロボット制御プログラム KUKA PRC を用い た。切削に使用する超音波カッター SUW-30CMH (SUZUKI 社製) は全長が約20cmであるため、ロボット先端から刃先までの距 離が短くなるようにロボットの先端側方に取付ける。これによ りカッターと筐体が干渉しないように先端の水平面における回 転は±90°となるように設定した。切削線を1mm間隔で分割し、 座標と刃の回転角を抽出した。シミュレーションよりすべての

b) 荷重条件・拘束条件 図 1 解析モデル

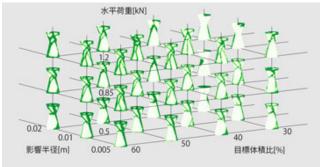


図2 解析結果一覧

a) 後面 b) 左側面 図3 採用した最適解

b) 右側面

a) 後面 b) 左側面 切削線 図 4

b)右側面

切削線について切削が可能であることを確認した。切削加工に はロボットアーム xArm6 (6軸垂直多関節,可搬質量 5kg,最 大リーチ 700mm, UFACTORY 社製) を使用する。図 5 に示す ロボットからスツールの中間面までの距離は 450mm とし、ス ツールを固定した状態で、切削線の少ない後面側から前面側へ 各面を切削加工した。写真1に切削完了状況を示す。切削加工 の始終端に約 2mm の誤差が生じたが、概ね良好な切削加工結果 を得ることができた。

3. 積層造形

空間を充填可能な幾何学形態を用いてツールパスを設定し. 積層方式 3D プリンタや射出成形では造形できない立体物を造形 することを目的とした。

3D アートペンは、熱溶解積層方式の 3D プリンタと同様の機 構で先端から樹脂を抽出することで空間に立体物を造形するこ とが可能である。これをロボットアームの先端に装着すること で正確な幾何学形態を造形できると考えられる。写真2に示す ようにロボットアーム xArm6 に 3D アートペン (3D Pen Pro. MYNT3D 社製)を取付けて造形を行った。

まず、立体物を充填する幾何学形態の造形について検討を行っ た。図6に示す菱形十二面体は空間を充填可能な幾何学形態と して知られている。この各辺をツールパスとするために一筆書 きになるようにツールパスを設定し造形を行った結果を同図に 示す。辺が多いためパスが複雑となり良好な造形結果を得るこ とができなかった。

そこで、空間を充填する幾何学形態をより単純な図7に示す 三角錐に変更した。三角錐は少ない辺で構成されるため、良好 な造形結果を得ることができた。

図8には、これを応用した造形の成果物を示す。全体を三角 錐で分割した立体物で、一つの三角錐をセルとして、三角錐の セルを一筆書きするツールパスを設定する。それを全体に展開 することによって、一筆書きのツールパスを得る。得られたツー ルパスについて KUKA|PRC を用いてシミュレートを行い、ロボッ トアームの動作を確認した。その後、造形を行った結果、いず れも良好な造形結果となっている。

4. まとめ

切削加工では、最適解から抽出した切削線に基づき、積層型 3Dプリンタで造形したスツールの設計領域の形態から、超音 波カッターを取付けたロボットアームにより切削加工を行った。 ロボットの姿勢変化に伴う誤差が生じたが、概ね良好な結果を 得ることができた。

積層造形では、3Dアートペンを取付けたロボットアームに より積層造形を行った。三角錐で構成される造形物については、 良好な結果を得ることができた。抽出径の大きなノズルを使用 することで樹脂の太さを調整できれば、より大きな立体物の造 形が可能になると考えられる。

【参考文献】

1) 白髪誠一:ロボットによる空間構成法における切削加工法に関 する基礎的研究 ケミカルウッド製ピースのコネクター部切削実 験,公益材団法人トランスコスモス財団,2021年度調査研究助成 成果報告書, 2022年

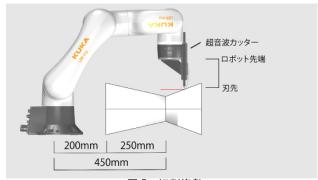


図 5 切削姿勢

a) 前面

b) 左側面 写真1 切削加工結果

b) 右側面

図 6 菱形十二面体

写真 2 造形状況

図7 三角錐

a) 直方体

b) 円筒形

c) 六角柱

三角錐

図8 造形結果